

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 2

School on TANGO Controls system

Basics of TANGO
Lorenzo Pivetta
Claudio Scafuri

Graziano Scalamera

http://www.tango-controls.org

http://www.tango-controls.org/

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 3

Prerequisites

To better understand the training a background on the
following arguments is desirable:

● Programming language
● Object oriented programming
● Linux/UNIX operating system
● Networking
● Control systems

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 4

Outline

1 - What is TANGO?
Language/OS/Compilers

CORBA and ZeroMQ
TANGO device and device server

TANGO Database
Communication models

Multicast
Polling
Events
Alarms
Groups

TANGO ACL
Logging system

Historical DataBase

2 - TANGO architecture
Device hierarchy
TANGO domains

3 - TANGO configuration/tools
Jive

Starter/Astor
Pogo

TANGO installation
Client basics

4 – Examples
Test device

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 5

Device
Server

What is TANGO?

TANGO software bus

TANGO
binding

TANGO
binding

TANGO
binding

TANGO
binding

Scientific workspaces
Industrial SCADA

Native client applications

TANGO
C++
Java

Python
Clients

(CLI/GUI)

TANGO
Archiving
System

OS/drv. OS/drv. OS/drv. OS/drv. OS/drv. OS/drv.

R
S

2
3

2

G
ig

E

T
C

P
/I

P
M

o
d

b
u

s

HV ps +
serial

Device
Server

Pylon
LIMA

Device
Server

OPC UA
Modbus

Device
Server

Device
Server

Motion
Control

Device
Server

TANGO
2 EPICS

NI cRIO
PLC

R
S

2
3

2
/E

th

E
th

e
rC

A
T

In short:

Control system framework

Based on CORBA and ZMQ

Centralized config. database

Software bus for distributed
objects

Provides unified interface to
all equipments hiding how
they are
connected/managedData

socket

OS/drv.

Device
Server

SNMP

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 6

The TANGO collaboration

TANGO collaboration history
- started in 1999 at the ESRF
- in 2000 SOLEIL joins ESRF to develop TANGO
- end 2003 ELETTRA joins the club
- 2004 ALBA also joins
- 2006 ANKA
- 2007 – 2012 Desy, MaxLab, FRM II, SOLARIS
- 2013 – 2014 ELI-Beamlines, ELI-ALPS, University of Szeged, INAF
- 2015 – 2016 draft, discussion and approval of Collaboration Contract

TANGO Collaboration Contract signed by institute directors in 2016

Yearly basis collaboration meetings (next June, INAF Trieste, Italy)
Committer member: commit source code to TANGO Controls core
Collaborator member: write and share TANGO device servers

Nevertheless, TANGO is free for anyone to use

Mailing list, forum, web site...
http://www.tango-controls.org

Che
ck

 th
e

W
eb

sit
e!

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 7

Language/OS/Compilers

TANGO release 9.2.2 (+ patches) (C++98, C++11)

Previous release TANGO 8.1.2.c (+patches)

Languages
Server side: C++, Java, Python
Client side: C++, Java, Python, Matlab, LabView, IgorPro, Panorama

OS – Linux (PREEMPT_RT, Xenomai hard real-time)
Architecture: x86, PPC, ARM
Compiler: gcc 3.3 – gcc 4.8

OS – Windows XP/Vista/7
Architecture: x86
Compiler: VC9, VC10, VC11

OS – MacOSX
Architecture: x86
Compiler: gcc 4.6 – gcc 4.8

Training focus on TANGO 8 with some info on TANGO 9

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 8

CORBA and ZeroMQ

CORBA – http://www.omg.org
- Common Object Request Broker Architecture specification
- Defines the ORB and the services available for all objects
- Uses an Interface Definition Language (IDL) and defines bindings between
 IDL and programming languages
- An Inter-operable Object Reference (IOR) identifies each object
- TANGO adopts omniORB for C++ and JacORB for Java

http://www.omniorb.sourceforge.net
http://www.jacorg.org

ZeroMQ, ZMQ, 0MQ – http://zeromq.org
- An embeddable networking library that acts like a concurrency framework
- Sockets that carry whole messages across various transports like in-process,
 inter-process, TCP and multicast
- Used for event-based communication in TANGO ≥ 8

http://www.omg.org/
http://www.omniorb.sourceforge.net/
http://www.jacorg.org/
http://zeromq.org/

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 9

Device

Everything which needs to be controlled is modeled as a Device

The Device is the core concept of TANGO

A Device can represent:
- an equipment (e.g. a power supply)
- a set of equipments (e.g. a set of 3 motors, x-y-z axes, driven by the same controller)
- a set of software functions
- a group of equipments constituting a subsystem

The modeling of the equipment, either hardware or software, is the first fundamental
step when writing a TANGO device

- a TANGO device must be self-consistent
- must enable the access to all the features of the modeled device
- the limit of its responsibilities, meaning the separation of concerns, is clearly
 defined: 1 device = 1 service = 1 element of the system
- the analogy with object-oriented programming is straightforward

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 10

Class/Device/Device Server

Class/Device/Device Server: three concepts closely related

● TANGO Class: a class defining the interface and implementing the device
control or the implementation of a software algorithm

● TANGO Device: an instance of a TANGO Class giving access to the
services of the class

● TANGO Device Server: the process in which one or more TANGO Classes
are executed, making thus available one or more Tango Devices

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 11

Device Interface

Everything which needs to be controlled is modeled as a Device
Each Device is identified by the Fully Qualified Domain Name (FQDN)

tango://host:port/domain/family/member
Each Device belongs to a TANGO class that inherits from the same root class Device_XImpl
Every Device exposes the same interface:
- Command(s): act on devices (e.g. power on)
- Attribute(s): set/get physical values (e.g. set/get motor position)

- Can be memorized
- Attribute properties: per-attribute configuration parameters (*)
- State/Status: TANGO Device finite state machine value (also available as Commands) (*)

- Properties: config. Parameters
Attribute level
Device level
Class level
Free/Global

(*) more to come on these

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 12

Device Server

● The Device Server is the process where the TANGO class(es) run

● Device Server configuration is stored into the TANGO database (MySQL)

● Device number and names for a TANGO class are defined within the database,
not in the code

● Which TANGO class(es) are part of a DS process is defined in the database
but also in the code

● The Device Server can host several TANGO classes, each class can be instantiated
several times ...but be careful with code or DLLs not thread safe

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 13

Device Server

Startup sequence

Device server
1 - the TANGO device server contacts the TANGO database to know which devices
 it has to create and manage based on the instance specified
2 - the TANGO device server registers device(s) IOR

Client
1 - the client asks the TANGO database for device IOR
2 - the client connects to the device server

The TANGO database is involved, and
necessary, only during the connection
phase (*)

client-server

(*) exception: memorized attributes

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 14

Device patterns

Stepper motor controller example
Ethernet/RS232 1-8 axes, single control interface

E
th

/R
S

23
2

controller
device

1-axes

E
th

/R
S

23
2

4-axes

1 axes
device

1 axes

1 axes 1 axes

1 axes

E
th

/R
S

23
2

4-axes

1 axes3 axes
x,y,z

per-axes enabled
firmware

per-axes enabled
firmware

per-axes enabled
firmware

E
th

/R
S

23
2

8-axes

1 axesn axes
Simult.

multi-axes enabled
firmware

1 axes

controller
device

controller
device

controller
device

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 15

Naming

Tango uses a well defined naming scheme, each device has a unique name
within the control system. The name is the key to get access to the device

● the device name is a character string(a..z,0..9), composed by three fields separated by /

● the three fields are known as domain , family and member

domain/family/member

Hierarchical view , tree structure

Operations on device names are case insensitive within Tango:

LH/PSQ/1 lh/psq/1 Lh/PsQ/1

are equivalent.

Within Tango decices names are sorted alphabtically.
pay attention to numbers: 10 is sorted before 2!

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 16

Naming

Tango names can be any valid string : sasackjn/kljd122334/hdhsah

The naming convention is part of the desig of a Tango control system

names must be meaningful to all people involved

names must be compatible with names used by other departments / installations,
for example technical drawings, plant schematics.

what and where should be indicated in names

what: the type of device, its function , device Class, ...
where: the location of the device, geographical or logical

A good naming convention allows one to refer to groups of devices using widcards

example:
sr/power_supply/* all power supplys of Elettra magnets
sr/power_supply/psq1_* all power_supplys of Elettra type 1 quadrupole magnets

see Tango manual , appendix C, for more details about naming

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 17

TANGO Database

● Centralized storage for control system (TANGO device) configuration parameters
and for persistent data.

● Based on MySQL database engine
● Centralized service for establishing connections (name resolution)
● it is a special Tango Device

A minimum TANGO system - to run a TANGO control system you need:
- a running MySQL database
- the TANGO Database device server listening on a fixed port
- the TANGO_HOST environment variable is used by clients/servers to know
 on which host and port the Database server is running:

TANGO_HOST=tango://hostname.full.domain.name:port

 short form

TANGO_HOST=hostname:port

note: you can run a small control system without a database using static configurations
stored in files.

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 18

Device Command(s)

Commands may have zero or one input and zero or one output argument

Supported argument data types are:

- void
- boolean, short, long, long64, float, double, string, unsigned short,
 unsigned long, unsigned long64
- homogeneous array of the former data types
- state
- encoded (structure with 2 fields: a string and an array of unsigned char)

Commands are typically used for starting actions on devices or change their operating state
example: ON(), OFF(), ENABLE(),...

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 19

Device Attribute(s)

Twelve data types:
- boolean, unsigned char, short, unsigned short, long, long64, unsigned long,
 unsigned long64, float, double, string
- array of the former
- array of strings and values
- state/status
- encoded (TANGO >=8): images encode in jpg, 8/16 bit gray, 24 bit RGB

Three “access modes”:
- read, write, read-write

Three data formats:
- scalar (single value)
- spectrum (one dimensional array)
- image (bi-dimensional array)

When you read an attribute you receive also some metadata:
- the attribute data (value, and also w_value for r/w attributes)
- the attribute quality factor (VALID, INVALID, CHANGING, WARNING, ALARM)
- the attribute timestamp
- the name
- the dimension

When you write an attribute you send:
- the desired attribute data (value)
- the attribute name

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 20

Device Attribute Properties

Each Attribute configuration is defined by its Properties; five type available:

hard-coded
name, data_type, data_format, writable, max_dim_x, max_dim_y, writable_attr_name, display_level

GUI parameters
Description, Label, Unit, Standard_unit, Display_unit, Format (C++ or printf)

Range (for writable attributes)
min_value, max_value

Alarm parameters (*)
min_alarm, max_alarm, min_warning, max_warning, delta_t, delta_val

Event parameters (*)
change event: absolute, relative
archive event: absolute, relative, period
periodic event: period

Network calls get_attribute_config/set_attribute_config
allow clients to access configuration

(*) More to come on Alarm, Event and attribute configuration

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 21

Device State/Status

TANGO defines a couple of special Commands/Attributes named State and Status

A set of 14 device State (enum) is available:
ON, OFF, CLOSE, OPEN, INSERT, EXTRACT, MOVING, STANDBY, FAULT, INIT, RUNNING,
ALARM, DISABLE, UNKNOWN

it is synthetic information about the of the device. Accessibility of device attributes
and commands may be forbidden in some of the States (State Machine). Machine readable.

Status string info describing the State; managed by the programmer. Its main use is to
provide human readable messages.

Device State is not easily extensible/customizable in TANGO 8 (nor in TANGO 9)
If you want to add additional values to the enum you need to modify the IDL; this
implies a new IDL release and a new Device implementation class.

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 22

Properties

Properties can be thought as device configuration parameters
Stored into the TANGO Database
You can define properties at

- object level (free properties)
- class level
- device level

Types for scalar property
boolean, short, unisgned short, long, unsigned long, float, double, string

Types for array property
short, long, float, double, string

Algorithm to assign default property value:
/IF/ class property has a default value

property = class property default value
/ENDIF/
/IF/ class property is defined in db

property = class property as found in db
/ENDIF/
/IF/ device property has a default value

property = device property default value
/ENDIF/
/IF/ device property is defined in db

property = device property as found in db
/ENDIF/

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 23

Device Hierarchy

A TANGO control system can must be hierarchically (logically) organized

Devices associated with hardware equipments usually live at lower level

Higher level devices aim to:
- abstract functionalities from mechanisms
- group similar devices
- group devices into subsystems
- implement “abstract” features (e.g. processing)
- implement services based on many low level devices (e.g. alarms)

Higher level devices are
clients of lower level devices!

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 24

Administration: Jive

TANGO database browser and device configuration/administration/testing tool

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 25

Administration:
Starter/Astor

Starter: TANGO Device Server to manage device servers on hosts
Astor: control system manager GUI

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 26

TANGO ACL

Two kind of users (identified by system login name):
- users defined in the ACL
- users not defined in the ACL → rights fall below “All users”

Two kind of rights, at host and device level:
- Read (+ optional per-class allowed commands)
- Write

taurel
- write to sr/d-ct/01 and fe/*/* only from pcantares
- read all other devices only from pcantares

verdier
- write to sys/dev/01 from any host on 160.103.5.0/24
 subnet
- read all other devices from the same subnet

all users
- read-only access from any host

Advice: TANGO ACL provides basic access control and
can be bypassed; it's basically meant to avoid mistakes

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 27

Writing a TANGO device
class

GOAL: model in Tango a Skilift

IDEAS:

possible states
working properly
switched off
in error condition

action needed
switch on
switch off
recover from error condition

physical quantities
speed of the skilift, should be possible to be changed
wind speed, cannot control it, just read
current position of each seat, just read

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 28

Writing a TANGO device
class

SkiLift: the Tango Device Server Model

3 states
ON, OFF, FAULT

3 commands (without arguments)
On – to switch device ON

Off – to switch device OFF

Reset – to reset the device in case of FAULT

3 attributes
Speed – current speed

WindSpeed – current wind speed

SeatPos – seats position

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 29

Writing a TANGO device
class

SkiLift: the Tango Device Server Model

Tango Commands vs Attributes

Commands are actions

Attributes are physical quantities
can have labels, units, conversion factors
can have range of validity, alarm
can have user defined properties
can have a quality (VALID, INVALID, ...)
can be memorized
can generate events
can be archived

For example the Tango Device Server of a motor
should have a R/W Position Attribute
and should not have Get_Position / GoTo_Position commands
but could have Forward / Backward commands

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 30

Writing a TANGO device
class: Pogo

Pogo is a TANGO class generator

Generates C++, Java and Python
Source code and html documentation

The class skeleton is saved in a .xmi
file

Well defined areas for programmer's
code

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 31

Writing a TANGO device
class

Use POGO to design a SkiLift class with the following
functionalities:

3 states
ON, OFF, FAULT

3 commands (without arguments)
On – to switch device ON

allowed only when switched OFF

Off – to switch device OFF
allowed only when switched ON

Reset – to reset the device in case of FAULT
allowed only when in FAULT

3 attributes
Speed – current speed

scalar, double, read-write, min = 0.0, max = 5.0, alarm >= 4.0

WindSpeed – current wind speed
scalar, double, read

SeatPos – seats position
spectrum, long, read

Generate the documentation

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 32

Writing a TANGO device
class

POGO generates:
- C++, Python and Java device class source code
- Makefile
- TANGO device class documentation (HTML)

Compiling/Linking a TANGO device server

- two include directories
$(TANGO_ROOT)/include
$(OMNI_ROOT)/include

- two library directories
$(TANGO_ROOT)/lib
$(OMNI_ROOT)/lib

- Libraries needed (UNIX like OS)
2 TANGO libs: libtango.so, liblog4tango.so
4 CORBA libs: libomniORB.so, libCOS.so, libomniDynamic4.so, libomnithread.so

- OS libs
libpthread.so, libzmq.so

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 33

Writing a TANGO device
class

For the SkiLift class POGO created: 7 source code files, 1 configuration file,
and the Makefile.
2 of the source code files are reserved for the device server process:

- SkiLift.h, SkiLift.cpp
- SkiLiftClass.h, SkiLiftClass.cpp
- SkiLiftStateMachine.cpp
- class_factory.cpp, main.cpp
- SkiLift.xmi
- Makefile

Most of the time only SkiLift.h and SkiLift.cpp files have to be modified

Which methods are available within a TANGO class?
- SkiLift class inherits from Device_<X>Impl class → all methods from this class
- methods that receive Attribute or Wattribute objects → all methods of these classes

See http://www.tango-controls.org “Tango Kernel” and “Tango device server classes”

http://www.tango-controls.org/

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 34

Writing a TANGO device
class

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 35

Device startup/shutdown

Besides class constructor and destructor methods, TANGO provides some additional
methods for initialize and destroy the device

Initialization method
void SkiLift::init_device()

Shutdown method
void SkiLift::delete_device()

Advice: all memory allocated in init_device() must be deleted in delete_device()

Suppose hardware returns Speed ans WindSpeed as scalars and seat position
as an array. The programmer can choose whether to let POGO allocate the memory
for the required data structures or do it by herself.

In SkiLift.h the programmer has to deal with the variables/structures possibly used for
hardware access

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 36

Device startup/shutdown

void SkiLift::init_device()
{

DEBUG_STREAM << "SkiLift::init_device() create device " << device_name << endl;
/*­­­­­ PROTECTED REGION ID(SkiLift::init_device_before) ENABLED START ­­­­­*/

// Initialization before get_device_property() call

/*­­­­­ PROTECTED REGION END ­­­­­*/ // SkiLift::init_device_before

// No device property to be read from database

attr_Speed_read = new Tango::DevDouble[1];
attr_WindSpeed_read = new Tango::DevDouble[1];
attr_SeatPos_read = new Tango::DevLong[120];

/*­­­­­ PROTECTED REGION ID(SkiLift::init_device) ENABLED START ­­­­­*/

// Initialize device
*attr_Speed_read = 0.0;
*attr_WindSpeed_read = 0.0;
for (int i = 0; i < 120; i++)

attr_SeatPos_read[i] = 0;

set_state(Tango::OFF);
set_status("SkiLift is OFF");

/*­­­­­ PROTECTED REGION END ­­­­­*/
}

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 37

Device startup/shutdown

void SkiLift::delete_device()
{

DEBUG_STREAM << "SkiLift::delete_device() " << device_name << endl;
/*­­­­­ PROTECTED REGION ID(SkiLift::delete_device) ENABLED START ­­­­­*/

// Delete device allocated objects

/*­­­­­ PROTECTED REGION END ­­­­­*/ // SkiLift::delete_device
delete[] attr_Speed_read;
delete[] attr_WindSpeed_read;
delete[] attr_SeatPos_read;

}

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 38

Command implementation

Reset command implementation

TANGO provides one always_executed_hook() method for all commands

void SkiLift::always_executed_hook()

If State management is required POGO generates one is_<xxx>_allowed() method in
SkiLiftStateMachine.cpp file

bool SkiLift::is_Reset_allowed(const CORBA::Any &)

One method per command in SkiLift.cpp

void SkiLift::Reset()

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 39

Command sequencing

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 40

Command implementation

SkiLift::is_Reset_allowed() method code, in SkiLiftStateMachine.cpp

bool SkiLift::is_Reset_allowed(TANGO_UNUSED(const CORBA::Any &any))
{

// Compare device state with not allowed states.
if (get_state()==Tango::ON ||

get_state()==Tango::OFF)
{
/*­­­­­ PROTECTED REGION ID(SkiLift::ResetStateAllowed) ENABLED START ­­­­­*/

/*­­­­­ PROTECTED REGION END ­­­­­*/ // SkiLift::ResetStateAllowed
return false;

}
return true;

}

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 41

Command implementation

SkiLift::Reset() method code

void SkiLift::reset()
{

DEBUG_STREAM << "SkiLift::Reset() ­ " << device_name << endl;
/*­­­­­ PROTECTED REGION ID(SkiLift::reset) ENABLED START ­­­­­*/

// Add your own code
*attr_Speed_read = 0.0
set_state(Tango::OFF);
set_status("SkiLift is OFF");

/*­­­­­ PROTECTED REGION END ­­­­­*/ // SkiLift::reset
}

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 42

Reading Attribute(s)

TANGO provides one method for “hardware access”

void SkiLift::read_attr_hardware(vector<long> &)

If State management is required POGO generates one is_<xxx>_allowed() method in
SkiLiftStateMachine.cpp file

bool SkiLift::is_Speed_allowed(Tango::AttReqType &)

One method per attribute in SkiLift.cpp

void SkiLift::read_Speed(Tango::Attribute &)

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 43

Reading Attribute(s)

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 44

Reading Attribute(s)

More generally when the read_attributes() method is invoked the following
sequencing takes place

/CALL/ always_executed_hook() just once←
/CALL/ read_attr_hardware() just once←
/FOR/ each attribute to be read

/CALL/ is_<xxx>_allowed()
/IF/ previous call returns true

/CALL/ read_<xxx>()
/ENDIF/

/ENDFOR/

This is not true if your client calls read_attribute() on several attributes;
In that case no optimization takes place and the hardware will be accessed
several times.

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 45

Reading Attribute(s)

read_attr_hardware() method

void SkiLift::read_attr_hardware(TANGO_UNUSED(vector<long> &attr_list))
{

DEBUG_STREAM << "SkiLift::read_attr_hardware(vector<long> &attr_list) entering... "
<< endl;

/*­­­­­ PROTECTED REGION ID(SkiLift::read_attr_hardware) ENABLED START ­­­­­*/

// Add your own code
/*
 * insert code to access you hardware
 */

/*­­­­­ PROTECTED REGION END ­­­­­*/ // SkiLift::read_attr_hardware
}

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 46

Reading Attribute(s)

read_Speed() method

void SkiLift::read_Speed(Tango::Attribute &attr)
{

DEBUG_STREAM << "SkiLift::read_Speed(Tango::Attribute &attr) entering... " << endl;
/*­­­­­ PROTECTED REGION ID(SkiLift::read_Speed) ENABLED START ­­­­­*/
// Set the attribute value
attr.set_value(attr_Speed_read);

/*­­­­­ PROTECTED REGION END ­­­­­*/ // SkiLift::read_Speed
}

associates the method argument attr and the variable which represents it
(attr_Speed_read)

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 47

Writing Attribute(s)

If State management is required, one is_<xxx>_allowed() method in
SkiLiftStateMachine.cpp

bool SkiLift::is_Speed_allowed(Tango::AttReqType &)

Then, one method per write attribute

void SkiLift::write_Speed(Tango::Wattribute &)

TANGO provides one method for “hardware access”, similarly to the
read_attr_hardware() metohod available for reading attributes

virtual void SkiLift::write_attr_hardware(vector<long> &)

The TANGO kernel provides a default implementation doing nothing

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 48

Writing Attribute(s)

More generally when the write_attributes() method is invoked the following
sequencing takes place (Device_4Impl)

/CALL/ always_executed_hook() just once←
/FOR/ each attribute to be written

/CALL/ is_<xxx>_allowed()
/IF/ previous call returns true

/CALL/ write_<xxx>()
/ENDIF/

/ENDFOR/
/CALL/ write_attr_hardware() just once←

This is not true if your client calls write_attribute() on several attributes;
In that case no optimization takes place and the hardware will be accessed
several times.

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 49

Writing Attribute(s)

write_Speed() method

void SkiLift::write_Speed(Tango::WAttribute &attr)
{

DEBUG_STREAM << "SkiLift::write_Speed(Tango::WAttribute &attr) entering... " << endl;
// Retrieve write value
Tango::DevDouble w_val;
attr.get_write_value(w_val);
/*­­­­­ PROTECTED REGION ID(SkiLift::write_Speed) ENABLED START ­­­­­*/
// insert your write Speed code here

/*
 * trick to get some reading back
 */
*attr_Speed_read = w_val;

/*­­­­­ PROTECTED REGION END ­­­­­*/ // SkiLift::write_Speed
}

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 50

Reporting errors

Error reporting is made using exceptions (C++ or Java)
TANGO provides the Tango::DevFailed class
Tango::DevFailed is an array of Tango::DevError data type
Tango::DevError data type has 4 elements:
- reason (string)

the exception summary
- desc (string)

the full error description
- origin (string)

the method throwing the exception
- severity (enum)

error type

TANGO provides a static method to help throwing exceptions and another method to
re-trow an exception and add one element in the error stack

Tango::Except::throw_exception((const char *)“SkiLift::NoCable",
 (const char *)”Cable has fall down!”,
 (const char *)“SkiLift::init_device()");

Tango::Except::re_throw_exception(Tango::DevFailed &ex,
string &reason,
string &desc,
string &origin);

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 51

Memorized Attributes

Whenever an attribute is marked as memorized, every change to the attribute set point
is saved into the TANGO database as attribute property __value

Available only for writable scalar attributes

Memorized attributes initialization options (POGO)

Attr::set_memorized() : marks attribute as memorised

Attr::set_memorized_init(bool write_on_init)

write_on_init = True: calls the attribute write method during the server
startup

write_on_init = False: only initializes the attribute set point to the
memorized value

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 52

One time code

Some code to be executed only one time?

Each TANGO class has a own class (SkiLiftClass) with only one instance

Put code to be executed once in its constructor

Put data common to all devices in its data members

This class instance is constructed before any devices

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 53

TANGO-added cmds/attrs

TANGO automatically adds 3 commands

State – In = void, Out = DevState
Check for device alarms and return the state

Status – In = void, Out = DevString
Return the device status

Init – In = void, Out = void
Reintialize the device (delete_device() + init_device())

TANGO automatically adds 2 attributes

State and Status
These behave the same way as the corresponding commands

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 54

Remaining network calls

The TANGO core makes available some additional network calls:

● ping – just ping the device to see if it' s available on the network
● command_list_query – return the list of device supported commands with description
● command_query – return the command description for specific command
● info – return general info in the device (class, server, host...)
● get_attribute_config – return the attribute configuration for x (or all) attributes
● set_attribute config – set attribute configuration for x atributes
● blackbox – return n entries of the device blackbox (*)

(*) each device has a round robin buffer, with configurable depth, called blackbox
 Where each network call is registered with its date and calling host

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 55

The administration device

For each device server the TANGO core provides an
administration device identified by a conventional name:

dserver/<exec-name>/<instance-name>

This device supports 20 (23) commands and
0 (2) attributes

- 8 miscellaneous commands
- 7 commands for the logging system
- 1 command for the event system
- 7 commands for the polling system

Miscellaneous commands
- DevRestart : destroy and recreate a device.
 Clients need to reconnect
- RestartServer : restart a complete device server
 instance
- QueryClass : get the list of available classes
- QueryDevice – get the list of available devices
- Kill : kill the device server process
- State, Status, Init : the ubiquitous commands

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 56

Logging system

The TANGO logging system allows a device server to send messages to:
- The console
- A file
- An application called LogViewer (GUI)
- A file on a remote host via specialized TANGO device server exposing the
 appropriate API

Six ordered logging levels: DEBUG < INFO < WARN < ERROR < FATAL < OFF

Each logging request with a level lower than the device loggin level is ignored

Device default logging level is WARN

Five macros to send logging messages
- C++ streams like: <level>_STREAM
- C printf like: LOG_<level>

Usage:
DEBUG_STREAM << “This is a test” << endl;
LOG_DEBUG(“Same test as before, for the %dnd time\n”, times);

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 57

Logging system

● Logging on the console
send messages to the console the device server has been started

● File logging
Messages stored in a XML file
Files rotated when size grater than predefined threshold (property, default 2MB)
Open log files with LogViewer application

Administration device logging commands:
AddLoggingTarget
RemoveLoggingTarget
GetLoggingTarget
GetLoggingLevel
SetLoggingLevel
StopLogging
StartLogging

Logging configuration with Jive
Current logging level : not saved
Logging level : memorized in db
Current logging target : not saved
Logging target : memorized in db
Logging RFT : rolling file threshold

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 58

Logging system

Device server “-v” command line option

-v1 and -v2
Level = INFO
Target = console::cout

-v3 and -v4
Level = DEBUG
Target = console::cout

-v5
Same as -v4 plus TANGO library messages (lots of!)
Target = console::cout

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 59

Logging system

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 60

Client side

C++, Java and Python API is provided
- easy connection between clients and devices (servers)
- manage re-connections
- hide IDL details
- hide some memory management issues

On client side the TANGO device is an instance of a DeviceProxy class
The instance is created from the device name

C++
Tango::DeviceProxy dev(“test/device/one”);

Python
dev = PyTango::DeviceProxy(“test/device/one”);

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 61

Client side

Command
The DeviceProxy command_inout() method is used to send commands to a device

DeviceData DeviceProxy::command_inout(const char *, DeviceData &)
The DeviceData is the data type to send/receive data from the command

Read attribute
The DeviceProxy read_attribute[s]() method is used to read attribute from a device

DeviceAttribute DeviceProxy::read_attribute[s](string &)
The DeviceData is the data type received from the attribute

Write attribute
The DeviceProxy write_attribute[s]() method is used to write attribute to a device

void DeviceProxy::write_attribute[s](DeviceAttribute &)
The DeviceAttribute is the data type sent to the attribute

Many methods available in the DeviceProxy class
ping, info, state, status, set_timeout_millis, get_timeout_millis, attribute_query, get_attribute_config,
set_attribute_config...

Use AttributeProxy class if you're interested only in attributes (no commands)

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 62

Communication models

Two communication models available

Client/server: the client inquires the server
- The client sends the request to the server; the reply can be synchronous or
 asynchronous

Publish/subscribe: the communication is event-driven
The device server informs the client that something has happened

Additionally, as a special case, multicast is also available through ZMQ, that uses
the OpenPGM implementation of PGM protocol (RFC 3208 – reliable multicasting
Protocol). Has to be configured, defining the global property
CtrlSystem->MulticastEvent containing the following fields:

multicast address, 226.20.21.22
port number, 2222
[rate in Mbit/s] 20
[ivl in s] 10
event name device/with/multicast/state.change

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 63

Client/Server

Synchronous call
- The client sends the request to the server and blocks waiting for the
 answer

Asynchronous call
- The client sends the request to the server and does not block waiting
 for the answer
- The device server informs the client process that the request has ended

Both mechanisms are available and do not request any change on the server side

Supported for:
- command_inout method
- read_attribute[s] method
- write_attribute[s] method

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 64

Client/Server

Asynchronous call

TANGO supports two models for clients to get the requested answer

The polling model
- the client decides when to check for requested answer

- with a blocking call
- with a non blocking call

The callback model
- The device server reply triggers a callback method; this can occur in one
 of the following sub-models:

- when the client requested it with a synchronization method: pull model
- as soon as the reply arrives in a dedicated thread: push model

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 65

Client/Server

Asynchronous call – polling mode

For polling mode, use

DeviceProxy::command_inout_asynch() method to send commands

DeviceProxy::command_inout_reply() method to get command replies
(blocking or not blocking)

Tango::DeviceProxy dev(....);
long asyn_id;
asyn_id = dev.command_inout_asynch(“MyCmd”);
...
Tango::DeviceData dd;
dd = command_inout_reply(asyn_id);

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 66

Client/Server

Asynchronous call – callback mode
For callback mode, write a class inheriting from Tango::CallBack and write:

- cmd_ended() method for command execution
- attr_read() method for tribute reading
- attr_written() method for attribute writing

By default the client uses the pull model. Use ApiUtil::set_asynch_cb_model() to chenge

using namespace Tango;
class MyCb:CallBack
{

public;
MyCb(double d): data(d) {};
void cmd_ended(CmdDoneEvent *);

private:
double data;

}

Void MyCb::cmd_ended(CmdDoneEvent *cmd)
{

if (cmd­>err == true) {
Tango::Except::print_error_stack(cmd­>errors);

} else {
short cmd_result;
cmd­>argout >> cmd_result;
cout << “Cmd=“ << cmd_result << “data=“ << data << endl;

}
}

DeviceProxy dev(...);
double my_data = 3.2;

MyCb cb(my_data);
dev.command_inout_aynch(“MyCmd”,cb);
....
dev.get_asynch_replies(150);

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 67

TANGO groups

TANGO groups provide the user with a single control point for a collection of devices.
For instance, the TANGO Group API supplies a command_inout() method to execute the
same command on all the elements of a group.
Tango Group is also a hierarchical object: in other words, it is possible to build a group
of both groups and individual devices.

On a groups of devices you can:
Execute a command

- without arguments
- with the same input argument to all group devices
- with different input arguments for group members

Read one attribute
Write one attribute

- with same input value for all group members
- with different inut values for group members

Simple and effective way to create logical views of the control system.

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 68

TANGO groups

Example: Beam Loss Monitors

blm2-srv
|
|→ 01
| |→bc01/radiation_protection/blm_bpm_bc01.05
| |→bc01/radiation_protection/blm_b_bc01.01_l
| |...
|→ 02
| |→ bc02/radiation_protection/blm_b_bc02.01_l
| |...
|...

193 total device number

blm = Group('radiation_protection')
blm.add('*/radiation_protection/*')
if blm->ping() == True:

print “all devices alive”
else

print “at least one device dead”

Device server

Instance(s) Device(s)

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 69

Polling

The Polling mechanism allows the Tango device to decouple the real device from the
client(s) request(s)

Each Tango device server may have one or more polling thread(s) (tuning)
Polling allows to continuously monitor the “health” of the equipment
Attributes and/or Commands can be polled
The polling result is stored in a buffer with configurable depth, just limited by available

Memory
Each device has its own polling buffer
A client is able to read data from:

- The real device (DEVICE)
- The last record in the polling buffer (CACHE)
- The polling buffer with fall-back to the real device (CACHE_DEVICE)

The complete buffer history is also available to the client → large buffers mean
“automatic” shared memory mechanism available

Advice: the frequency of real hardware access has to be tuned on the equipment
(e.g. accessing that old reliable 9600 baud serial line...)

Advice: the polling thread uses read_attribute() on each polled attribute as per TANGO 8;
TANGO 9 uses read_attributes() if attribute have the same polling period

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 70

Polling

How to setup polling?

During the design phase with POGO,
using the available check-buttons

At runtime, configuring the TANGO
Database with Jive

Programmatically, using, for
instance, Python with the
client API

Programmatically in the device
server itself

Te
st

with
 S

kiL
ift

TA
NGO d

ev
ice

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 71

Polling

Polling thread(s) pool

Starting with Tango release 7, a Tango device
server process may have several polling
threads managed as a pool.

This could be useful in case of devices within
the same device server process but
accessing different hardware channels when
one of the channel is not responding
(Thus generating long timeout and
de-synchronising the polling thread)

The polling thread pool can be managed
- with a GUI, available in the administration
 Tools
- acting on the TANGO administration device

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 72

Events

Implement the publish/subscribe pattern; based on ZeroMQ since Tango 8
(no more notification service)

Available on attributes
The client registers her interest once in an event (value)
The server informs the client every time an event has occurred
Default based on device server polling: needs configuration but does not require

changes in the device server code
Additionally the event generation can be managed by the developer: events pushed

by code
Client callback executed when an event is received
Six types of events available:

- Change: absolute change, relative change
- Periodic: period
- Archive: absolute change, relative change, period
- Attribute configuration: no parameters
- Data ready: managed by the developer
- User: managed by the developer
- Device interface change *: managed by the kernel
- Pipe *: managed by the developer

(*) Tango 9

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 73

Events

When are events pushed?

Change event
- at event subscription
- a change is detected in attribute data
- a change is detected in attribute size (spectrum/image)
- the attribute quality factor changes
- exception in the polling thread

Periodic event
- at event subscription
- on a periodic basis

Archive event
- a mix of periodic and change

Attribute configuration event
- at event subscription
- the attribute configuration is modified

User defined event
- when the user decides

Device interface change (Tango 9)
- when the device interface changes

Pipe (Tango 9)
- when is executed the user code DeviceImpl::push_pipe_event()

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 74

Events

Periodic event configuration and behavior

event_period [ms]
- default value is 1000 ms
- cannot be faster than the polling period

Advice: whenever event_period != polling period
- the event system does not change the attribute polling period
- the event is sent when polling occurs

The client gets the
event at 1000+200 ms

Push events by code to squeeze the best performance from the event system
Drawback: you need to write some code...

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 75

Events

Change event configuration

- Checked at the polling period

- Two thresholds: rel_change and abs_change
Up to 2 values per threshold (positive and negative delta)
If both set, rel_change is checked first
If none set → no change event

Archive event configuration

- Checked at the polling period

- Two thresholds: archive_rel_change, archive_abs_change
Up to 2 values per threshold (positive and negative delta)
If both set, rel_change is checked first
If none set → no archive event on change

- archive_period [ms]
Default None → no periodic archive event

Te
st

 w
ith

 S
kiL

ift

TA
NGO d

ev
ice

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 76

Events

Heartbeat

● To check that the device server is alive

Every 10 seconds a special heartbeat event is sent to all clients on the event channel

● To inform the server that no more clients are interested in events

A re-subscription command is sent by the client every 200 seconds.

The device server stops sending events as soon as the last subscription
command is older than 600 seconds

A dedicated client thread (keepalive thread) wakes up every 10 seconds to check the
server's 10 seconds heartbeat and to send the subscription command periodically

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 77

Alarms

Device alarms
- Warning and alarm thresholds available as per-attribute configuration
- TANGO changes the State of the Device and the Quality factor of the attribute
 depending on attribute value and thresholds

TANGO alarms
Specialized TANGO device servers, useful to handle complex alarm rules based on multiple
values/multiple logics

- C++ alarm device server: event based
- Python alarm device server: polling/event (with Taurus)

Parser for arbitrary alarm formula support
kg01/mod/linkstabilizer_kg01.01/State == ON && kg01/mod/linkstabilizer_kg01.01/Drift1_Threshold && \
abs(kg01/mod/linkstabilizer_kg01.01/Drift1_rate) > kg01/mod/linkstabilizer_kg01.01/Drift1_Threshold

Support for alarm groups and alarm levels (LOG, WARNING, FAULT)
Support for external command execution on TANGO device server

Scalability: any number of TANGO alarm servers can be deployed, based on requirements,
architectural constraints, performance required...

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 78

Device Alarms

Device alarms

Two types of alarms can be configured on Attributes:
- on value

- two thresholds: WARNING and ALARM with min and max parameters
- on read different than set (for read-write Attributes)

- two parameters
- the authorized delta value
- the delta time between last attribute setting (write)and the attribute
 value check

TANGO manages automatically the quality factor associated to the attribute and
the device State

Te
st

 w
ith

 S
kiL

ift

TA
NGO d

ev
ice

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 79

Alarm device server

Is a Tango device server based on a double client/server architecture:
as a client gathers input values from Tango devices
as a server provide alarm notifications

Relies on the Tango event system to collect input values as well as to provide
alarm notifications

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 80

Alarm device server

Based on the BOOST library to parse and evaluate the alarm rules
Dedicated MySQL database schema to store the alarms and alarm history
Dedicated database user

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 81

Alarm device server

Alarm GUI screenshot

Active alarms tab
Alarm name

Alarm status
ALARM, NORMAL

Acknowledge status
NACK, ACK

Alarm level
LOG, WARNING, FAULT

Alarm count

If enabled, alarms can be silenced for X minutes (-1 = disabled)

Alarm group

Alarm message

All the configuration is kept in the Alarm device server Properties or in the alarm database
All the logic is maintained by the alarm device server, no logic in the GUI

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 82

Historical Database

HDB (Java) - Set of three databases
- HDB: permanent, up to 0.1 Hz (1 Hz) archiving rate
- TDB: temporary, up to 1 Hz (10 Hz) archiving rate
- Snap: context save/restore
- Support for Oracle and MySQL RDBMS
- 4(+3)+3 Device servers
- Polling based
- GUI: Mambo, Bensikin

HDB++ (C++)
- One database for slow and fast archiving (up to 1 Khz)
- Support for existing HDB schema on MySQL
- Support for hdb++ new schema with improved features (µs timestamp)
- Support for noSQL backend (Apache Cassandra)
- 2 Device servers (EventSubscriber, ConfigurationManager)
- Event based
- Fast data extraction library
- GUI: HdbConfigurator, qhdbextractor (plotting)
- Scalability: same as TANGO, deploy as many DS as you need

TimeMachine
- System restoring tool based on context, HDB++ archived data and extraction library

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 83

HDB++ archiving system

HDB++ Archiver TANGO device server (HdbEventSubscriber)
- event based (receive archive events, generate archive and change events)
- all the configuration stored in the TANGO device
- storing through an external library
- defined interface for the external library
- implementations for the external library for different backends, schema

HDB++ Configurator TANGO device server (HdbConfigurationManager)
- collect information on status, performances from many archivers
- send configuration to many archivers

HDB++ Extraction Tools
- defined interface for an extraction library
- implementation of the extraction library for different backends, schema
- implementation of the extraction library with different languages (C++, Java)
- GUIs implemented in different languages (C++, Java, Python)

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 84

HDB++ archiving system

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 85

HDB++ archiving system

HDB++
EventSubscriberHDB++

EventSubscriber

Tango Device
Server

HDB++
ConfigurationManager

Archive event Archive event

Change event

Configuration GUI Diagnostic GUI

Change event

Command /
Attribute

Command /
Attribute

Attribute

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 86

HDB++ design guidelines

Data extraction

- C++ and Java native libraries

- The data extraction library shall be able to deal with event based archiving; the possible lack of data in the
 requested time window shall be properly managed:

- returning some no-data-available error: in this case the reply contains no data

- enlarging the time window to include some archived data; no fake samples have to be introduced

- returning the value of the last archived data anyhow; the requested time interval is kept and the last
 available data sample returned; the validity of the data is guaranteed when archive change event
 is used, care must be taken in case of archive periodic event

Work in progress
Not exhaustive

t2t1

requested time window

time

returned time window

t

data
sample

t2t1

returned time window
requested time window

timet

data
sample

archive change event thresholds

no data smples
t - t1

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 87

Historical Database

One configuration manager

19 archivers

Example: FERMI setup
- 1 host
- 1 configuration manager
- 19 archivers
- functional partitioning: one archiver
 per subsystem
- 5356 attributes total
- from 1 to 1467 attributes per archiver

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 88

Historical Database

Claudio Scafuri

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 89

Historical Database

Qhdbextractor GUI

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 90

GUI: ATK/Jdraw/Synoptic

Application ToolKit: provides a
framework to speed up the development
of TANGO applications

Core of any TANGO Java client

ATKpanel: generic GUI (data introspection)

Use Jdraw to draw the specialized
synoptic

Design your own specific ATK application
Using your favorite Java IDE

Final result...

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 91

GUI: Qtango/Mango

Qtango
- A multi-threaded framework to develop
 TANGO applications
- Based on Qt
- API to manage/talk to TANGO devices
- Widgets to draw the GUI
- For programmers

Mango
- An on-line designer to easily create
 graphical interfaces based on Qtango
- Quick development of simple GUI
- Useful for the device server programmer,
 the control room operator, the tests, the
 end-user

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 92

GUI: TAURUS

Claudio Scafuri

A library for connecting client-side apps (CLI/GUI) to TANGO device servers
Based on PyTango python bindings for TANGO
GUI built on top of PyQt python bindings for Qt

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 93

E-giga/Canone

Claudio Scafuri

E-Giga: a WEB interface to historical archive data
Canone: a tool to develop WEB interfaces to Tango devices

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 94

TANGO bindings

Access TANGO control systems from different high level “programming”
environments.

TANGO provides bindings for the following “languages”:

- C language (partial support)
- Matlab (>= R2009b)

Windows and Linux, 32 and 64 bit
- Octave (>= 3.6.2)

Windows and Linux, 32 and 64 bit
- LabVIEW 2010 → 2012

Windows, Linux, MacOSX, 32 and 64 bit
- LabVIEW 2013 (2.0.0 RC2)

TANGO 8.1.2 with patches; Windows and Linux, 64 bit
- Igor Pro (>= 6.0)

Windows, Linux, MacOSX, 32 and 64 bit
- Panorama

Tango 7.2.1, Windows, 32 and 64 bit

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 95

TANGO Domains

Each domain is identified by the TANGO_HOST/port couple, e.g. by the TANGO Database
An arbitrary number of devices may belong to a domain, limited by

- available memory
- processing power
- network bandwidth

(Operating Database limit ~ 5*105 devices)

...but...

Multiple domains can be configured in a control system
- complex systems can must be splitted into different domains
- each Domain can must be hierarchically organized

Multiple domains + Device hierarchy + Peer-2-Peer architecture
=

Almost unlimited scalability

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 96

TANGO Domains

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 97

TANGO Domains

Clients can explicitly use host:port for accessing Devices in specified Domains
by pre-pending them to the device name:

host:port/domain/family/member

For example:

tom:20000/sr/power_supply/psch_s7.8

Notice :

 fermi:20000/sys/database/2

padres:20000/sys/database/2

Same object, the database server, in two different domains!

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 98

TANGO 9

TANGO 9

TANGO pipe(s)
- Support for structured data with variable data types
- Variable data type does not fit into the TANGO Attribute model
- TANGO pipes extend the Device interface
- each pipe has:

- a name, unique for the device
- a label and a description
- a description for the input data definition (for the client)

- the pipe transports a blob of data
- each blob is a set of data elements
- each element

- has a name
- is a TANGO basic type (or array thereof)

- compared to Command and Attribute pipe(s) have less features:
- no polling
- no alarm
- no quality factor
- no change/periodic/archive event
- no TANGO group

- client access to a pipe can be:
- synchronous: write query and wait for answer
- event based: register a callback executed when the device writes in the pipe

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 99

TANGO 9

TANGO 9

Enumeration as Attribute data type
Many parameters in the hardware have a limited set of values, with a label describing it

Forwarded attribute
- High level TANGO devices often need to “map” Attribute coming fro low level TANGO devices
- A forwarded Attribute is an Attribute which forwards

- its read/write requests
- its configuration
- its polling
- its event subscription

 to another Attribute
- has have the same data type, data format, read/write type of the “root” attribute
- no code is required

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 100

Installing TANGO

deb packages – Ubuntu 14.04 LTS
libtango8 - TANGO distributed control system - shared library
liblog4tango5 - logging for TANGO - shared library
libtango-tools - TANGO distributed control system - common executable files
tango-db - TANGO distributed control system - database server
tango-starter - TANGO distributed control system - starter server
tango-common - TANGO distributed control system - common files

tango-accesscontrol - TANGO distributed control system - accesscontrol server
python-pytango - API for the TANGO control system (Python 2)
python-sardana - sardana control system
python-taurus - framework for Tango Control System CLI and GUI applications

from source (tarball)
omniORB-4.1.7.tar.bz2
zeromq-3.2.3.tar.gz
tango-8.1.2c.tar.gz

L.Pivetta, C.Scafuri, G.Scalamera School on TANGO Control System - Trieste 4-8th July 2016 101

Documentation

TANGO Controls System Handbook
http://ftp.esrf.fr/pub/cs/tango/tango_81.pdf

TANGO Device Server Guidelines
http://www-controle.synchrotron-soleil.fr:8001/docs/TangoGuidelines/TangoDesignGuidelines-GB4-3.pdf

TANGO Java Device Server User Guide
http://www2.synchrotron-soleil.fr/controle/maven2/soleil/org/tango/JTangoServer

C++ API classes reference guide
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/cpp_doc/index.html
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/ds_prog/node7.html

Java API classes reference guide
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/tango_java_api/index.html
http://www2.synchrotron-soleil.fr/controle/maven2/soleil/org/tango/JTangoServer

Python classes reference guide
http://www.esrf.fr/computing/cs/tango/tango_doc/kernel_doc/pytango

TANGO IDL file documentation
http://www.esrf.fr/computing/cs/tango/tango_idl/idl_html/index.html

Source code repository
TANGO Controls - https://sourceforge.net/projects/tango-cs/?source=directory
TANGO device servers - https://sourceforge.net/projects/tango-ds/?source=directory

Many additional resources on the TANGO site
http://www.tango-controls.org/

http://ftp.esrf.fr/pub/cs/tango/tango_81.pdf
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/cpp_doc/index.html
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/tango_java_api/index.html
http://www.esrf.fr/computing/cs/tango/tango_idl/idl_html/index.html
https://sourceforge.net/projects/tango-cs/?source=directory

